Topology of gene expression networks as revealed by data mining and modeling

نویسندگان

  • Alexander V. Lukashin
  • Matvey E. Lukashev
  • Rainer Fuchs
چکیده

MOTIVATION Interpretation of high-throughput gene expression profiling requires a knowledge of the design principles underlying the networks that sustain cellular machinery. Recently a novel approach based on the study of network topologies has been proposed. This methodology has proven to be useful for the analysis of a variety of biological systems, including metabolic networks, networks of protein-protein interactions, and gene networks that can be derived from gene expression data. In the present paper, we focus on several important issues related to the topology of gene expression networks that have not yet been fully studied. RESULTS The networks derived from gene expression profiles for both time series experiments in yeast and perturbation experiments in cell lines are studied. We demonstrate that independent from the experimental organism (yeast versus cell lines) and the type of experiment (time courses versus perturbations) the extracted networks have similar topological characteristics suggesting together with the results of other common principles of the structural organization of biological networks. A novel computational model of network growth that reproduces the basic design principles of the observed networks is presented. Advantage of the model is that it provides a general mechanism to generate networks with different types of topology by a variation of a few parameters. We investigate the robustness of the network structure to random damages and to deliberate removal of the most important parts of the system and show a surprising tolerance of gene expression networks to both kinds of disturbance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Blasting Cost in Limestone Mines Using Gene Expression Programming Model and Artificial Neural Networks

The use of blasting cost (BC) prediction to achieve optimal fragmentation is necessary in order to control the adverse consequences of blasting such as fly rock, ground vibration, and air blast in open-pit mines. In this research work, BC is predicted through collecting 146 blasting data from six limestone mines in Iran using the artificial neural networks (ANNs), gene expression programming (G...

متن کامل

Improving the Inference of Gene Expression Regulatory Networks with Data Aggregation Approach

Introduction: The major issue for the future of bioinformatics is the design of tools to determine the functions and all products of single-cell genes. This requires the integration of different biological disciplines as well as sophisticated mathematical and statistical tools. This study revealed that data mining techniques can be used to develop models for diagnosing high-risk or low-risk lif...

متن کامل

Improving the Inference of Gene Expression Regulatory Networks with Data Aggregation Approach

Introduction: The major issue for the future of bioinformatics is the design of tools to determine the functions and all products of single-cell genes. This requires the integration of different biological disciplines as well as sophisticated mathematical and statistical tools. This study revealed that data mining techniques can be used to develop models for diagnosing high-risk or low-risk lif...

متن کامل

Prediction of Acid Mine Drainage Generation Potential of A Copper Mine Tailings Using Gene Expression Programming-A Case Study

This work presents a quantitative predicting likely acid mine drainage (AMD) generation process throughout tailing particles resulting from the Sarcheshmeh copper mine in the south of Iran. Indeed, four predictive relationships for the remaining pyrite fraction, remaining chalcopyrite fraction, sulfate concentration, and pH have been suggested by applying the gene expression programming (GEP) a...

متن کامل

STUDY OF HMGA2 GENE INHIBITION WITH SPECIFIC SHRNA AND SIRNA AND INVESTIGATION OF CORRESPONDING EFFECTS ON DOWNSTREAM GENE EXPRESSION IN MDA-MB-231 CANCER CELLS: A BIOINFORMATIC AND EXPERIMENTAL STUDY

Background & Aims: The use of siRNA to silence gene expression is increasingly expanding today. The aim of this study is to bioinformatically and experimentally investigate the inhibition of the HMGA2 gene and its corresponding effects on downstream genes expression rate in MDA-MB-231 cancer cell treated by shRNA and siRNA specific to HMGA2. Materials & Methods: To perform this bioinformatic a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 19 15  شماره 

صفحات  -

تاریخ انتشار 2003